
Introduction Compiling Non-Determinism Correctly Compiling . . . Correctly

Compiling Concurrency Correctly
Cutting out the Middle Man

Liyang HU and Graham Hutton
{lyh,gmh}@cs.nott.ac.uk

Functional Programming Laboratory
School of Computer Science

University of Nottingham Nottingham, England
United Kingdom of Great Britain and Northern Ireland

Trends in Functional Programming
Komarno, Slovakia

09:30 (Local Time), 2nd June, 2009

Introduction Compiling Non-Determinism Correctly Compiling . . . Correctly

Allergy Advice

This talk may contain. . .

Compiler Correctness

Addition and the Natural Numbers

Non-Determinism

Concurrency

and a soupçon of Martin-Löf Type Theory-flavoured Mathematics

Introduction Compiling Non-Determinism Correctly Compiling . . . Correctly

What Do You Mean, Compiler Correctness?

Compiler Correctness

Source
compile //

eval

##HHHHHHHHHHHHH Target

exec

{{ww
ww

ww
ww

ww
ww

w

Value / ≡

Introduction Compiling Non-Determinism Correctly Compiling . . . Correctly

What Do You Mean, Compiler Correctness?

Learning the Local Lingo (Intermediate)

Take a source language, for example (N, ⊕):

E ::= val N | E ⊕ E

with an appropriate (big-step) evaluator:

eval : E → N
eval (val m) = m
eval (a ⊕ b) = eval a + eval b

Introduction Compiling Non-Determinism Correctly Compiling . . . Correctly

What Do You Mean, Compiler Correctness?

Learning the Local Lingo (Advanced)

Along with a corresponding virtual (stack) machine:

I ::= PUSH N | ADD

and a suitable (big-step) interpretor:

exec : List N → List I → List N
exec σ [] = σ
exec σ (PUSH m :: c) = exec (m :: σ) c
exec (n :: m :: σ) (ADD :: c) = exec (m + n :: σ) c

Introduction Compiling Non-Determinism Correctly Compiling . . . Correctly

What Do You Mean, Compiler Correctness?

Compiler Correctness

Given a compiler:

compile : E → List I → List I
compile (val m) c = PUSH m :: c
compile (a ⊕ b) c = compile a (compile b (ADD :: c))

Compiler correctness is the statement that:

∀a. eval a :: [] ≡ exec [] (compile a [])

Alternatively, in diagrammatic form:

E
compile [] //

eval :: []

""DD
DD

DD
DD

DD
D List I

exec []

{{wwwwwwwwwww

List N / ≡
Proof proceeds more easily if we generalise over c and σ

Introduction Compiling Non-Determinism Correctly Compiling . . . Correctly

What Do You Mean, Compiler Correctness?

Compiler Correctness

Given a compiler:

compile : E → List I → List I
compile (val m) c = PUSH m :: c
compile (a ⊕ b) c = compile a (compile b (ADD :: c))

Compiler correctness is the statement that:

∀a c σ. exec (eval a :: σ) c ≡ exec σ (compile a c)

Alternatively, in diagrammatic form:

∀c σ. E
compile c //

exec (eval :: σ) c

""DD
DD

DD
DD

DD
D List I

exec σ

{{wwwwwwwwwww

List N / ≡
Proof proceeds more easily if we generalise over c and σ

Introduction Compiling Non-Determinism Correctly Compiling . . . Correctly

What Do You Mean, Compiler Correctness?

What about. . .

Small-step or operational semantics?

Take the transitive closure of reduction relation?

Non-determinism and concurrency?

Generalise to Sets of results?

Introduction Compiling Non-Determinism Correctly Compiling . . . Correctly

Existing Approach

Compiler Correctness for Parallel Languages (Wand, 1995)

Source
compile //

s[[]]

&&MMMMMMMMMMMMMMM TargetAFBECD

MMMMMMMMMMMMMMM cc

MMMMMMMMMMMMMMM

t[[]]

xxqqqqqqqqqqqqqqq

Process Calculus / ≈@GABCD
qqqqqqqqqqqqqqq

[[

qqqqqqqqqqqqqqq

Target language has a binary small-step reduction relation

Process Calculus has a ternary labelled state transition relation

Bisimilar (≈) systems ⇐⇒ indistinguishable by observer

Compiler correctness ⇐⇒ ∀p. s[[p]] ≈ t[[compile p]]

Target operational semantics must also be adequate w.r.t. PC

Introduction Compiling Non-Determinism Correctly Compiling . . . Correctly

Our Approach

Compiling Concurrency Correctly (HU and Hutton, 2009)

Source@GAFBE
<<

compile //

liftS
$$JJJJJJJJJJJJJJ TargetAFBECD

JJJJJJJJJJJJJJ aa

JJJJJJJJJJJJJJ

liftT
zzttttttttttttt

Combined / ≈@GABCD
ttttttttttttt

]]

ttttttttttttt

Labelled transitions for both source and target languages

Combined semantics inherited directly from source and target

Compiler correctness ⇐⇒ ∀p. liftS p ≈ liftT (compile p)

. . . for some generalisation of compile, liftS and liftT

Introduction Compiling Non-Determinism Correctly Compiling . . . Correctly

A Simple Language of Naturals and Addition

Expression Syntax, Actions and Labels

E ::= val N | E ⊕ E Action ::= � | | � N Label ::= τ | !Action

Expression Semantics

7→< > ⊆ E× Label× E

val m ⊕ val n 7→< !� > val (m + n) (7→-�)

val m ⊕ val n 7→< ! > val 0 (7→-)

b 7→< Λ > b′

val m ⊕ b 7→< Λ > val m ⊕ b′ (7→-R)

a 7→< Λ > a′

a ⊕ b 7→< Λ > a′ ⊕ b
(7→-L)

Introduction Compiling Non-Determinism Correctly Compiling . . . Correctly

A Simple Language of Naturals and Addition

Just Natural Numbers and Addition?

Sufficient to capture notion of sequencing of computations

i.e. left-to-right evaluation semantics
Formally, (N,+) is a monoid — a degenerate form of a monad. . .

Abstract from unrelated details of a real language

Focus on the essence of the problem

i.e. how to deal with non-determinism

Action Set

Identify branches in reduction path (� and)

Distinct branches labelled with distinct actions

Compare final results (� N)

Introduction Compiling Non-Determinism Correctly Compiling . . . Correctly

A Virtual Machine for Naturals and Addition

Instruction Set and Machine State

I ::= PUSH N | ADD M ::= 〈List I , List N〉

Virtual Machine Operational Semantics

�< > ⊆ M× Label×M

〈PUSH m :: c , σ 〉 �< τ > 〈c , m :: σ 〉 (�-PUSH)

〈ADD :: c , n :: m :: σ 〉 �< !� > 〈c , m + n :: σ 〉 (�-ADD)

〈ADD :: c , n :: m :: σ 〉 �< ! > 〈c , 0 :: σ 〉 (�-ZAP)

Introduction Compiling Non-Determinism Correctly Compiling . . . Correctly

Compiler Correctness for Concurrent Languages

Compiler

compile : E → List I → List I
compile (val m) c = PUSH m :: c
compile (a ⊕ b) c = compile a (compile b (ADD :: c))

Concurrent Correctness?

Executing compile a [] ‘behaves the same’ as evaluating a

Both source and target semantics are small-step

compile a reduces according to �< >

a reduces according to 7→< >

We want to reason. . .

Intensionally, rather than extensionally
Locally, rather than globally

Demands a suitable notion of ‘branching equivalence’

We chose our action set Action to identify such branching!

Introduction Compiling Non-Determinism Correctly Compiling . . . Correctly

Compiler Correctness for Concurrent Languages

Bisimulation

Simulation: “anything you can do, I can do (better)”
— Irving Berlin, Annie Get Your Gun (1946)

Bisimulation: given a labelled transition relation < > ,

x ≈ y ⇐⇒
∀ x ′, α. x < α > x ′ ∧ ∃ y ′. y < α > y ′ ∧ x ′ ≈ y ′

∧ ∀ y ′, α. y < α > y ′ ∧ ∃ x ′. x < α > x ′ ∧ y ′ ≈ x ′

Equivalence relation: reflexive, symmetric, transitive

Introduction Compiling Non-Determinism Correctly Compiling . . . Correctly

Combined Semantics

Deterministic Compiler Correctness, Revisited

∀a c σ. exec (compile a c) σ ≡ exec c (eval a :: σ)

Combined Machine and Semantics

C ::= 〈E , M〉 | 〈M〉 | 〈 〉 �< > ⊆ C× Label× C

a 7→< Λ > b

〈a , t 〉 �< Λ > 〈b , t 〉
(�- 7→)

t �< Λ > u

〈 t 〉 �< Λ > 〈u 〉
(�-�)

〈val m , 〈c , σ 〉〉 �< τ > 〈〈c , m :: σ 〉〉 (�-switch)

〈〈[] , m :: []〉〉 �< !� m > 〈 〉 (�-done)

Introduction Compiling Non-Determinism Correctly Compiling . . . Correctly

Compiling Non-Determinism Correctly

Visible Transitions

Suppress silent τ transitions:

x �< τ >? x ′ x ′ �< !α > y ′ y ′ �< τ >? y

x Z⇒< α > y

Non-Deterministic Compiler Correctness

Compiler Correctness Theorem:

∀a. 〈a , 〈[] , []〉〉 ≈ 〈〈compile a [] , []〉〉
Alternatively, in diagrammatic form:

E
〈 compile [] , []〉 //

〈 , 〈[] , []〉〉
��?

??
??

??
??

? M

〈 〉
~~~~

~~
~~

~~
~~

C / ≈

For proof, see paper, available online, later



Introduction Compiling Non-Determinism Correctly Compiling . . . Correctly

Compiling Non-Determinism Correctly

Visible Transitions

Suppress silent τ transitions:

x �< τ >? x ′ x ′ �< !α > y ′ y ′ �< τ >? y

x Z⇒< α > y

Non-Deterministic Compiler Correctness

Compiler Correctness Theorem:

∀a c σ. 〈a , 〈c , σ 〉〉 ≈ 〈〈compile a c , σ 〉〉
Alternatively, in diagrammatic form:

∀c σ. E
〈 compile c , σ 〉 //

〈 , 〈 c , σ 〉〉
��?

??
??

??
??

? M

〈 〉
~~~~

~~
~~

~~
~~

C / ≈

For proof, see paper, available online, later

Introduction Compiling Non-Determinism Correctly Compiling . . . Correctly

Compiling Concurrency Correctly

Here’s One I Prepared Earlier. . .

E ::= val N | E ⊕ E | fork E

“Play it again, Sam”

See paper for details

Introduction Compiling Non-Determinism Correctly Compiling . . . Correctly

Conclusion and Future Work

In short. . .

Write small-step semantics as labelled transition rules

Generalise deterministic compiler correctness to a small-step scenario

Much less complex and error-prone than existing technique

Shown to work with non-trivial example (N. Danielsson, 2009)

Doing Mathematics with Agda

Agda is. . . Curry-Howard correspondence in action!

a dependently-typed programming language
a proof-assistant based on Martin-Löf Type Theory

Colouring Convention:

relations encoded as types
functions
rules encoded as constructors

Invaluable in the development of this work

Introduction Compiling Non-Determinism Correctly Compiling . . . Correctly

Conclusion and Future Work

It’s Not Over (’Til It’s Over) — Starship (1987)

More realistic notions of concurrency, e.g.:

Synchronisation
Communication

Interaction with other language features, e.g.:

Mutable state
Input and output
Exceptions and interrupts

Software transactional memory

Introduction Compiling Non-Determinism Correctly Compiling . . . Correctly

Conclusion and Future Work

Thank you for staying awake!

This slide is intentionally left blank.

	Introduction
	Allergy Advice
	What Do You Mean, Compiler Correctness?
	Existing Approach

	Compiling Non-Determinism Correctly
	Our Approach
	A Simple Language of Naturals and Addition
	A Virtual Machine for Naturals and Addition
	Compiler Correctness for Concurrent Languages
	Combined Semantics
	Compiling Non-Determinism Correctly
	Compiling Concurrency Correctly

	Compiling … Correctly
	Conclusion and Future Work

