Compiling Concurrency Correctly
Cutting out the Middle Man

Liyang HU and Graham Hutton
{1lyh,gmh}@cs.nott.ac.uk

Functional Programming Laboratory
School of Computer Science
University of Nottingham Nottingham, England
United Kingdom of Great Britain and Northern Ireland

Trends in Functional Programming
Komarno, Slovakia
09:30 (Local Time), 2" June, 2009

Introduction

Allergy Advice

This talk may contain. ..

Compiler Correctness
Addition and the Natural Numbers

Non-Determinism

Concurrency

and a soupg¢on of Martin-Lof Type Theory-flavoured Mathematics

V.

Introduction
@0000

What Do You Mean, Compiler Correctness?

Compiler Correctness

compile
Source Target

eval %

Value /| =

Introduction
0@000

What Do You Mean, Compiler Correctness?

Learning the Local Lingo (Intermediate)

@ Take a source language, for example (N, @):

E:=vaIN|E® E
@ with an appropriate (big-step) evaluator:
eval : E - N
eval (valm) = m

eval (a & b) = evala+eval b

Introduction
[e]e] le]e}

What Do You Mean, Compiler Correctness?

Learning the Local Lingo (Advanced)

@ Along with a corresponding virtual (stack) machine:
| := PUSH N | ADD
@ and a suitable (big-step) interpretor:
exec : List N — List| — List N

exec o [] =0
exec o (PUSH m: c) = exec(m to)c
exec(n:m:0)(ADD :c) = exec(m+n:o)c

Introduction
[e]e]e] lo}

What Do You Mean, Compiler Correctness?

Compiler Correctness
@ Given a compiler:
compile : E — List| — List|
compile (val m) ¢ = PUSHm: ¢
compile (a @ b) ¢ = compile a (compile b (ADD : ¢))
@ Compiler correctness is the statement that:
Va. eval a: [1 = exec [1 (compile a [1)

o Alternatively, in diagrammatic form:

compile — []

E List |

evax %

List N/ =

Introduction
[e]e]e] lo}

What Do You Mean, Compiler Correctness?

Compiler Correctness
@ Given a compiler:
compile : E — List| — List|
compile (val m) ¢ = PUSHm: ¢
compile (a @ b) ¢ = compile a (compile b (ADD : ¢))
@ Compiler correctness is the statement that:
Vaco. exec(evala:o)c = execo (compileac)

o Alternatively, in diagrammatic form:

compile — ¢

Ve o. E List |

exec o

ListN/ =

o Proof proceeds more easily if we generalise over ¢ and o

exec (eval —:0) ¢

Introduction
[e]e]e]e]]

What Do You Mean, Compiler Correctness?

What about. ..

@ Small-step or operational semantics?
o Take the transitive closure of reduction relation?

@ Non-determinism and concurrency?
o Generalise to Sets of results?

Introduction

Existing Approach

Compiler Correctness for Parallel Languages (Wand, 1995)

compile
Source Targe;tD

s[-1 t[-]

Process Calculus / ~

Target language has a binary small-step reduction relation
Process Calculus has a ternary labelled state transition relation
Bisimilar (=) systems <= indistinguishable by observer

Compiler correctness <= Vp. s[p] = t[compile p]
o Target operational semantics must also be adequate w.r.t. PC

Compiling Non-Determinism Correctly
[]

Our Approach

Compiling Concurrency Correctly (HU and Hutton, 2009)

mpil
CS;ource ompre Targ@

lifts liftr

Combined / ~

@,

@ Labelled transitions for both source and target languages
@ Combined semantics inherited directly from source and target
o Compiler correctness <= Vp. lifts p ~ liftt (compile p)

o ... for some generalisation of compile, lifts and liftt

Compiling Non-Determinism Correctly
[Je]

A Simple Language of Naturals and Addition

Expression Syntax, Actions and Labels

E:=valN|E ® E Action:=H|4|ON Label ::=7 | !Action

Expression Semantics

+—< > CE x Label xE
valm @ val n —< !B > val (m + n) (—-)
valm @ valn —< 14 > val 0 (—-4)
<A> b
b—<A>b (—-R)
valm @& b —<A>valm & b
/
a—<A>a (1)
ad®br—=<A>a &b

Compiling Non-Determinism Correctly
oe

A Simple Language of Naturals and Addition

Just Natural Numbers and Addition?

@ Sufficient to capture notion of sequencing of computations

o i.e. left-to-right evaluation semantics
e Formally, (N, +) is a monoid — a degenerate form of a monad. ..

@ Abstract from unrelated details of a real language

@ Focus on the essence of the problem

o i.e. how to deal with non-determinism)

Action Set

@ Identify branches in reduction path (H and /)
o Distinct branches labelled with distinct actions

o Compare final results (O N)

A\

Compiling Non-Determinism Correctly

A Virtual Machine for Naturals and Addition

Instruction Set and Machine State

| := PUSH N | ADD M ::= (List |, List N)

v

Virtual Machine Operational Semantics

—<>_C M x Label x M

(PUSHm:c, o) —<7> (c, m:0) (~—-PUSH)
(ADD:c, n:m:o) —<!BH> (c, m+n:o) (—-ADD)
(ADD:c, n:m:0) —<!4> (c,0:0) (—-ZAP)

N

Compiling Non-Determinism Correctly
[o]

Compiler Correctness for Concurrent Languages

compile : E — List| — List|
compile (val m) ¢ = PUSHm: ¢
compile (a @ b) ¢ = compile a (compile b (ADD : ¢))

Concurrent Correctness?

@ Executing compile a [1 ‘behaves the same' as evaluating a

@ Both source and target semantics are small-step

e compile a reduces according to _—<_>_
@ a reduces according to _—<_>_

@ We want to reason. ..

o Intensionally, rather than extensionally
o Locally, rather than globally

@ Demands a suitable notion of ‘branching equivalence’

o We chose our action set Action to identify such branching!

N

Compiling Non-Determinism Correctly
oe

Compiler Correctness for Concurrent Languages

Bisimulation

e Simulation: “anything you can do, | can do (better)"
— Irving Berlin, Annie Get Your Gun (1946)
@ Bisimulation: given a labelled transition relation _~»<_>_,
X Ry <
Vx o x ~»<a>x' Ny y ~<a>y Ax
AVY oy ~<a>y ANx. x —<a>x ANy

~
~
~
~

@ Equivalence relation: reflexive, symmetric, transitive

Compiling Non-Determinism Correctly
L]

Combined Semantics

Deterministic Compiler Correctness, Revisited

Vaco. exec (compileac)o = execc (eval a: o)
Combined Machine and Semantics
Cu=(E, M) [(M)]| () _—»<_ > C Cx Label xC

a—<A>b ()

———

(a, t) »<A> (b, t)
t —<A> u ()
(t) =< A> (u)
(valm, (c, o)) »<7> ({(c, m:0)) (—»-switch)

(00, m:=101)) =»<!lom> () (—+-done)

Compiling Non-Determinism Correctly
[]

Compiling Non-Determinism Correctly

Visible Transitions

@ Suppress silent 7 transitions:

X —»< 7> X!

x' =w<la>y y —=<7>y

X B<a>y

Non-Deterministic Compiler Correctness

@ Compiler Correctness Theorem:
Va. (a, (00, O)) =~ ({compilea [1, [1))

o Alternatively, in diagrammatic form:

(compile — [1, [1)

E

(—, (00, 0)) (=)
C/ =~

@ For proof, see paper, available online, later

M

Compiling Non-Determinism Correctly
[]

Compiling Non-Determinism Correctly

Visible Transitions

@ Suppress silent 7 transitions:

/

x »< 7> X' X' =w<la>y y —s<7>y

X B<a>y

Non-Deterministic Compiler Correctness

@ Compiler Correctness Theorem:
Vaco. (a, (c, o)) ~ ((compileac, o))
o Alternatively, in diagrammatic form:

(compile —_c, o)

Vco. E M

(=5 (e, a)) (=)
C/ =

@ For proof, see paper, available online, later

Compiling Non-Determinism Correctly
L]

Compiling Concurrency Correctly

Here’s One | Prepared Earlier. . .

E:=vaIN|E @& E|fork E

@ "Play it again, Sam”

@ See paper for details

Compiling ... Correctly
000

Conclusion and Future Work

@ Write small-step semantics as labelled transition rules

@ Generalise deterministic compiler correctness to a small-step scenario
@ Much less complex and error-prone than existing technique

@ Shown to work with non-trivial example (N. Danielsson, 2009)

v

Doing Mathematics with Agda

@ Agda is. .. Curry-Howard correspondence in action!

o a dependently-typed programming language

e a proof-assistant based on Martin-L6f Type Theory
@ Colouring Convention:

o relations encoded as types

e functions

o rules encoded as constructors

@ Invaluable in the development of this work

N

Compiling ... Correctly

(o] le]

Conclusion and Future Work

It's Not Over ('Til It’s Over) — Starship (1987)

@ More realistic notions of concurrency, e.g.:
o Synchronisation
o Communication
@ Interaction with other language features, e.g.:

o Mutable state
o Input and output
o Exceptions and interrupts

@ Software transactional memory

Compiling ... Correctly
ooe

Conclusion and Future Work

Thank you for staying awake!
@ This slide is intentionally left blank.

	Introduction
	Allergy Advice
	What Do You Mean, Compiler Correctness?
	Existing Approach

	Compiling Non-Determinism Correctly
	Our Approach
	A Simple Language of Naturals and Addition
	A Virtual Machine for Naturals and Addition
	Compiler Correctness for Concurrent Languages
	Combined Semantics
	Compiling Non-Determinism Correctly
	Compiling Concurrency Correctly

	Compiling … Correctly
	Conclusion and Future Work

